Source code for idtxl.bivariate_mi

"""Perform network inference using bivarate mutual information.

Estimate bivariate mutual information (MI) for network inference using a
greedy approach with maximum statistics to generate a non-uniform embedding
(Faes, 2011; Lizier, 2012).

Note:
    Written for Python 3.4+
"""
from .network_inference import NetworkInferenceMI, NetworkInferenceBivariate
from .stats import network_fdr
from .results import ResultsNetworkInference


[docs]class BivariateMI(NetworkInferenceMI, NetworkInferenceBivariate): """Perform network inference using bivariate mutual information. Perform network inference using bivariate mutual information (MI). To perform network inference call analyse_network() on the whole network or a set of nodes or call analyse_single_target() to estimate MI for a single target. See docstrings of the two functions for more information. References: - Lizier, J. T., & Rubinov, M. (2012). Multivariate construction of effective computational networks from observational data. Max Planck Institute: Preprint. Retrieved from http://www.mis.mpg.de/preprints/2012/preprint2012_25.pdf - Faes, L., Nollo, G., & Porta, A. (2011). Information-based detection of nonlinear Granger causality in multivariate processes via a nonuniform embedding technique. Phys Rev E, 83, 1–15. http://doi.org/10.1103/PhysRevE.83.051112 Attributes: source_set : list indices of source processes tested for their influence on the target target : list index of target process settings : dict analysis settings current_value : tuple index of the current value in MI estimation, (idx process, idx sample) selected_vars_full : list of tuples samples in the full conditional set, (idx process, idx sample) selected_vars_sources : list of tuples source samples in the conditional set, (idx process, idx sample) selected_vars_target : list of tuples target samples in the conditional set, (idx process, idx sample) pvalue_omnibus : float p-value of the omnibus test pvalues_sign_sources : numpy array array of p-values for MI from individual sources to the target mi_omnibus : float joint MI from all sources to the target mi_sign_sources : numpy array raw MI values from individual sources to the target sign_ominbus : bool statistical significance of the over-all MI """ def __init__(self): super().__init__()
[docs] def analyse_network(self, settings, data, targets="all", sources="all"): """Find bivariate mutual information between all nodes in the network. Estimate bivariate mutual information (MI) between all nodes in the network or between selected sources and targets. Note: For a detailed description of the algorithm and settings see documentation of the analyse_single_target() method and references in the class docstring. Example: >>> data = Data() >>> data.generate_mute_data(100, 5) >>> # The algorithm uses a conditional mutual information to >>> # construct a non-uniform embedding, hence a CMI- not MI- >>> # estimator has to be specified: >>> settings = { >>> 'cmi_estimator': 'JidtKraskovCMI', >>> 'n_perm_max_stat': 200, >>> 'n_perm_min_stat': 200, >>> 'n_perm_omnibus': 500, >>> 'n_perm_max_seq': 500, >>> 'max_lag': 5, >>> 'min_lag': 4 >>> } >>> network_analysis = BivariateMI() >>> results = network_analysis.analyse_network(settings, data) Args: settings : dict parameters for estimation and statistical testing, see documentation of analyse_single_target() for details, settings can further contain - verbose : bool [optional] - toggle console output (default=True) data : Data instance raw data for analysis targets : list of int | 'all' [optional] index of target processes (default='all') sources : list of int | list of list | 'all' [optional] indices of source processes for each target (default='all'); if 'all', all network nodes excluding the target node are considered as potential sources and tested; if list of int, the source specified by each int is tested as a potential source for the target with the same index or a single target; if list of list, sources specified in each inner list are tested for the target with the same index Returns: dict results for each target, see documentation of analyse_single_target() """ # Set defaults for network inference. settings.setdefault("verbose", True) settings.setdefault("fdr_correction", True) # Check which targets and sources are requested for analysis. if targets == "all": targets = list(range(data.n_processes)) if sources == "all": sources = ["all" for t in targets] elif isinstance(sources, list) and isinstance(sources[0], int): sources = [sources for t in targets] elif isinstance(sources, list) and isinstance(sources[0], list): pass else: raise ValueError(f"Sources was not specified correctly: {sources}.") assert len(sources) == len( targets ), "List of targets and list of sources have to have the same length" # Check and set defaults for checkpointing. If requested, initialise # checkpointing. self.settings = self._set_checkpointing_defaults( settings, data, sources, targets ) # Perform MI estimation for each target individually results = ResultsNetworkInference( n_nodes=data.n_processes, n_realisations=data.n_realisations(), normalised=data.normalise, ) for t, target in enumerate(targets): if settings["verbose"]: print(f"####### analysing target {t} of {targets}") res_single = self.analyse_single_target(settings, data, target, sources[t]) results.combine_results(res_single) # Get no. realisations actually used for estimation from single target # analysis. results.data_properties.n_realisations = ( res_single.data_properties.n_realisations ) # Perform FDR-correction on the network level. Add FDR-corrected # results as an extra field. Network_fdr/combine_results internally # creates a deep copy of the results. if settings["fdr_correction"]: results = network_fdr(settings, results) return results
[docs] def analyse_single_target(self, settings, data, target, sources="all"): """Find bivariate mutual information between sources and a target. Find bivariate mutual information (MI) between all potential source processes and the target process. Uses bivariate, non-uniform embedding found through information maximisation MI is calculated in three steps: (1) find all relevant variables in a single source processes' past, by iteratively adding candidate variables that have significant conditional mutual information (CMI) with the current value (conditional on all variables that were added previously) (2) prune the final conditional set for each link (i.e., each process-target pairing): test the CMI between each variable in the final set and the current value, conditional on all other variables in the final set of the current link; treat each potential source process separately, i.e., the CMI is calculated with respect to already selected variables the current processes' past only (3) statistics on the final set of sources (test for over-all transfer between the final conditional set and the current value, and for significant transfer of all individual variables in the set) Note: For a further description of the algorithm see references in the class docstring. Example: >>> data = Data() >>> data.generate_mute_data(100, 5) >>> # The algorithm uses a conditional mutual information to >>> # construct a non-uniform embedding, hence a CMI- not MI- >>> # estimator has to be specified: >>> settings = { >>> 'cmi_estimator': 'JidtKraskovCMI', >>> 'n_perm_max_stat': 200, >>> 'n_perm_min_stat': 200, >>> 'n_perm_omnibus': 500, >>> 'n_perm_max_seq': 500, >>> 'max_lag': 5, >>> 'min_lag': 4 >>> } >>> target = 0 >>> sources = [1, 2, 3] >>> network_analysis = BivariateMI() >>> results = network_analysis.analyse_single_target(settings, >>> data, target, >>> sources) Args: settings : dict parameters for estimation and statistical testing: - cmi_estimator : str - estimator to be used for CMI calculation (for estimator settings see the documentation in the estimators_* modules) - max_lag_sources : int - maximum temporal search depth for candidates in the sources' past in samples - min_lag_sources : int - minimum temporal search depth for candidates in the sources' past in samples - tau_sources : int [optional] - spacing between candidates in the sources' past in samples (default=1) - n_perm_* : int - number of permutations, where * can be 'max_stat', 'min_stat', 'omnibus', and 'max_seq' (default=500) - alpha_* : float - critical alpha level for statistical significance, where * can be 'max_stats', 'min_stats', and 'omnibus' (default=0.05) - add_conditionals : list of tuples | str [optional] - force the estimator to add these conditionals when estimating MI; can either be a list of variables, where each variable is described as (idx process, lag wrt to current value) or can be a string: 'faes' for Faes-Method (see references) - permute_in_time : bool [optional] - force surrogate creation by shuffling realisations in time instead of shuffling replications; see documentation of Data.permute_samples() for further settings (default=False) - verbose : bool [optional] - toggle console output (default=True) - write_ckp : bool [optional] - enable checkpointing, writes analysis state to disk every time a variable is selected; resume crashed analysis using network_analysis.resume_checkpoint() (default=False) - filename_ckp : str [optional] - checkpoint file name (without extension) (default='./idtxl_checkpoint') data : Data instance raw data for analysis target : int index of target process sources : list of int | int | 'all' [optional] single index or list of indices of source processes (default='all'), if 'all', all network nodes excluding the target node are considered as potential sources Returns: dict results consisting of sets of selected variables as (full set, variables from the sources' past), pvalues and MI for each selected variable, the current value for this analysis, results for omnibus test (joint MI between all selected source variables and the target, omnibus MI, p-value, and significance); NOTE that all variables are listed as tuples (process, lag wrt. current value) """ # Check input and clean up object if it was used before. self._initialise(settings, data, sources, target) # Main algorithm. print("\n---------------------------- (1) include source candidates") self._include_source_candidates(data) print("\n---------------------------- (2) prune candidates") self._prune_candidates(data) print("\n---------------------------- (3) final statistics") self._test_final_conditional(data) # Clean up and return results. if self.settings["verbose"]: print( f"final source samples: {self._idx_to_lag(self.selected_vars_sources)}" ) print( f"final target samples: {self._idx_to_lag(self.selected_vars_target)}\n\n" ) results = ResultsNetworkInference( n_nodes=data.n_processes, n_realisations=data.n_realisations(self.current_value), normalised=data.normalise, ) results._add_single_result( target=self.target, settings=self.settings, results={ "sources_tested": self.source_set, "current_value": self.current_value, "selected_vars_sources": self._idx_to_lag(self.selected_vars_sources), "selected_vars_target": self._idx_to_lag(self.selected_vars_target), "selected_sources_pval": self.pvalues_sign_sources, "selected_sources_mi": self.statistic_sign_sources, "omnibus_mi": self.statistic_omnibus, "omnibus_pval": self.pvalue_omnibus, "omnibus_sign": self.sign_omnibus, "mi": self.statistic_single_link, }, ) self._reset() # remove attributes return results